Harvest summary data from Trove lists¶
Using the Trove API we'll harvest some information about Trove lists and create a dataset containing the following fields:
id
— the list identifier, you can use this to get more information about a list from either the web interface or the APItitle
number_items
— the number of items in the listcreated
— the date the list was createdupdated
— the date the list was last updated
If you haven't used one of these notebooks before, they're basically web pages in which you can write, edit, and run live code. They're meant to encourage experimentation, so don't feel nervous. Just try running a few cells and see what happens!.
Some tips:
- Code cells have boxes around them.
- To run a code cell click on the cell and then hit Shift+Enter. The Shift+Enter combo will also move you to the next cell, so it's a quick way to work through the notebook.
- While a cell is running a * appears in the square brackets next to the cell. Once the cell has finished running the asterix will be replaced with a number.
- In most cases you'll want to start from the top of notebook and work your way down running each cell in turn. Later cells might depend on the results of earlier ones.
- To edit a code cell, just click on it and type stuff. Remember to run the cell once you've finished editing.
Setting up...¶
In [ ]:
import datetime
import os
import warnings
from json import JSONDecodeError
from operator import itemgetter
warnings.simplefilter(action="ignore", category=FutureWarning)
import altair as alt
import nltk
import pandas as pd
import requests_cache
from dotenv import load_dotenv
from IPython.display import HTML, display
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from textblob import TextBlob
from tqdm.auto import tqdm
from wordcloud import WordCloud
nltk.download("stopwords")
nltk.download("punkt")
s = requests_cache.CachedSession()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
s.mount("http://", HTTPAdapter(max_retries=retries))
s.mount("https://", HTTPAdapter(max_retries=retries))
load_dotenv()
Add your Trove API key¶
In [19]:
# Insert your Trove API key between the quotes
API_KEY = "YOUR API KEY"
# Use api key value from environment variables if it is available
if os.getenv("TROVE_API_KEY"):
API_KEY = os.getenv("TROVE_API_KEY")
Set some parameters¶
You could change the value of q
if you only want to harvest a subset of lists.
In [20]:
api_url = "https://api.trove.nla.gov.au/v3/result"
params = {
"category": "list",
"encoding": "json",
"n": 100,
"s": "*",
"reclevel": "full",
"bulkHarvest": "true",
}
headers = {"X-API-KEY": API_KEY}
Harvest the data¶
In [21]:
def get_total():
"""
This will enable us to make a nice progress bar...
"""
response = s.get(api_url, params=params, headers=headers)
data = response.json()
return int(data["category"][0]["records"]["total"])
In [22]:
lists = []
total = get_total()
with tqdm(total=total) as pbar:
while params["s"]:
response = s.get(api_url, params=params, headers=headers)
try:
data = response.json()
except JSONDecodeError:
print(response.text)
print(response.url)
raise
else:
records = data["category"][0]["records"]
try:
params["s"] = records["nextStart"]
except KeyError:
params["s"] = None
for record in records["list"]:
try:
lists.append(
{
"id": record["id"],
"title": record.get("title", ""),
"number_items": record["listItemCount"],
"created": record["date"]["created"],
"updated": record["date"]["lastupdated"],
}
)
except TypeError:
print(record)
pbar.update(100)
0%| | 0/111965 [00:00<?, ?it/s]
None None None None None
Inspect the results¶
In [5]:
# Load past file for testing if in dev
if os.getenv("GW_STATUS") and os.getenv("GW_STATUS") == "dev":
df = pd.read_csv("data/trove-lists-2024-05-29.csv")
# Otherwise load current harvested data
else:
df = pd.DataFrame(lists)
df.head()
In [6]:
df.describe()
Out[6]:
id | number_items | |
---|---|---|
count | 111960.000000 | 111960.000000 |
mean | 89844.496008 | 19.163433 |
std | 50142.898174 | 83.319781 |
min | 51.000000 | 0.000000 |
25% | 47114.500000 | 1.000000 |
50% | 90193.500000 | 4.000000 |
75% | 132493.750000 | 13.000000 |
max | 179448.000000 | 10351.000000 |
Save the harvested data as a CSV file¶
In [ ]:
csv_file = "data/trove-lists-{}.csv".format(datetime.datetime.now().isoformat()[:10])
df.to_csv(csv_file, index=False)
HTML('<a target="_blank" href="{}">Download CSV</a>'.format(csv_file))
How many items are in lists?¶
In [7]:
total_items = df["number_items"].sum()
print("There are {:,} items in {:,} lists.".format(total_items, df.shape[0]))
There are 2,145,538 items in 111,960 lists.
What is the biggest list?¶
In [8]:
biggest = df.iloc[df["number_items"].idxmax()]
biggest
Out[8]:
id 71461 title Victoria and elsewhere... number_items 10351 created 2015-04-03T11:50:51Z updated 2016-02-22T04:27:12Z Name: 91223, dtype: object
In [9]:
display(
HTML(
'The biggest list is <a target="_blank" href="https://trove.nla.gov.au/list?id={}">{}</a> with {:,} items.'.format(
biggest["id"], biggest["title"], biggest["number_items"]
)
)
)
The biggest list is Victoria and elsewhere... with 10,351 items.
When were they created?¶
In [10]:
# This makes it possible to include more than 5000 records
# alt.data_transformers.enable('json', urlpath='files')
alt.data_transformers.disable_max_rows()
alt.Chart(df[["created"]]).mark_line().encode(
x="yearmonth(created):T",
y="count()",
tooltip=[
alt.Tooltip("yearmonth(created):T", title="Month"),
alt.Tooltip("count()", title="Lists"),
],
).properties(width=600)
Out[10]: